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Abstract

Exact analytical solution is obtained for the interface shape between two immiscible ¯uids and for the
capillary pressure in the case of unidirectional axial laminar pipe ¯ow. The solution is determined by
three dimensionless parameters: the holdup, ¯uid/wall wettability angle and the EoÈ tvoÈ s number,
Eo � Drg cos aR2=s12. The ranges of parameter values, for which the model of ¯at interface (Eo41),
or models of constant interfacial curvature can be applied, are explored. Finally, the implications to
modeling of strati®ed ¯ow characteristics and stability are discussed. # 1999 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

Strati®ed ¯ow is considered a basic ¯ow con®guration in horizontal and inclined two-phase
systems of a ®nite density di�erential. Models of strati®ed ¯ow are needed for predicting the
¯ow characteristics, such as pressure drop and in-situ holdup, and are often used as a starting
point in modeling ¯ow patterns transitions.
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The common assumption is that the interface separating the phases is plane. This
assumption is appropriate for gravity dominated systems, such as large scale gas±liquid
horizontal ¯ows under earth's gravitation. In reduced gravity systems, capillary systems or in
the case of low density di�erential (such as oil±water systems), surface forces become
important. The wetting ¯uid tends to climb over the tube wall resulting in a curved (convex or
concave) interface. Strati®ed ¯ows with curved interfaces in liquid±liquid systems have been
observed both experimentally (Valle and Kvandal, 1995) and in numerical simulations (Ong et
al., 1994).
A con®guration of a curved interface is associated with a di�erent contact area between the

two ¯uids and between the ¯uids and the pipe wall. Depending on the physical system
involved, these variations can have prominent e�ects on the pressure drop and transport
phenomena (Brauner et al., 1995, 1998).
Once the location of the ¯uid interface is known, the 2D velocity pro®les in steady and fully

developed axial laminar ¯ow of strati®ed layers, u1�x,y�,u2�x,y� are obtained via analytical or
numerical solutions of the following Stoke's equations (in the z direction, see Fig. 1):
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The required boundary conditions follow from the no-slip condition at the pipe wall and
continuity of the velocities and tangential shear stresses across the ¯uid's interface. For a given
axial pressure drop, the solution for u1 and u2 can be integrated over the ¯uids ¯ow cross
section to yield the corresponding volumetric ¯ow rates Q1 and Q2. From the practical point of
view, we are interested in a solution for the pressure drop and ¯ow geometry (interface
location) for given ¯ow rates. The inverse problem is much more complicated since the shape
of ¯uids interface is, in fact, unknown.
In the y and x directions, the Navier±Stokes equation reduces to:

Fig. 1. Schematic description of strati®ed ¯ow in a pipe.
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Note that Eqs. (2a) and (2b) yield @
@y�@Pj=@z� � 0 and @

@x�@Pj=@z� � 0, thus, the pressure
gradient in the axial direction is the same for the two ¯uids �@P1=@z � @P2=@z � @P=@z�.
Integration of Eq. (2a) in the y direction yields a linear variation of the pressure in this

direction due to the hydrostatic pressure:

P1 � P1i ÿ r1�yÿ Z�g cos a �3a�

P2 � P2i ÿ r2�yÿ Z�g cos a �3b�
where P1i, P2i are the local pressures at either side of the ¯uid interface, at y � Z�x�. For axial,
fully developed ¯ow, the hydrodynamic stresses normal to the ¯uids interface vanish. In this
case, the equation for the interface location evolves from the condition of equilibrium between
the pressure jump across the interface and the surface tension force:

P1i ÿ P2i � s12
Ri

�4�

where s12 is the surface tension (assumed constant) between the two ¯uids and Ri is the local
radius of the interface curvature:
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The interfacial curvature in the axial direction is in®nite. Eq. (4) is the well-known Laplace
(1806) formula that can be put (using Eqs. (2a) and (2b)) in the following form:

s12
d

dx

(
dZ=dx�

1� �dZ=dx�2
�1=2)ÿ �r2 ÿ r1�Zg cos a � const �6�

Eq. (6) is a non-linear di�erential equation for Z�x�. Thus, for the ¯ow ®eld under
consideration, the position of the ¯uids interface can be obtained by solving the quasi-static
situation. The solution for Z�x� should comply with the wettability condition at the pipe wall
and symmetry with respect to the y axis. It is also constrained by the ¯uids in-situ holdup
available in the ¯ow. Eq. (6) and the appropriate boundary conditions are conveniently derived
by solving the variational problem of minimizing the total system (static) free energy
(Bentwich, 1976).
Exact analytical solutions for the velocity pro®les u1�x,y�,u2�x,y� can be obtained when the

¯uids interface can be described by a constant curvature. In this case, the bipolar coordinate
system can be applied to obtain complete analytical expressions for the velocity pro®les,
distribution of shear stresses along the pipe wall and ¯uids interface, axial pressure drop and
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in-situ holdup, in terms of known ¯uids ¯ow rates and viscosities (Bentwich, 1964; Brauner et
al., 1995, 1996a; Moalem Maron et al., 1995). The assumption of a constant curvature is
trivially satis®ed for a zero interfacial surface tension, where Ri41 in Eq. (4). In this case, the
interface is plane (¯at) with a zero pressure di�erence across the interface, and the ¯ow
geometry can be described by the thickness of the (lower) ¯uid layer (Fig. 1). Analytical
solutions for ¯ow with a ¯at interface are given in several publications (Semenov and Tochigin,
1962; Bentwich, 1964; Masliyah and Shook, 1978; Ranger and Davis, 1979; Brauner et al.,
1996a).
However, in view of Eq. (6), the assumption of a constant interfacial curvature is evidently

also valid when the e�ect of the gravitational ®eld is negligible, as under microgravity
conditions or when r2 ' r1. The EoÈ tvoÈ s number Eo � �r2 ÿ r1�g cos aR2=s12 is the controlling
dimensionless parameter, which evolves by non-dimensionalizing (6). The shape of the interface
can be described by a constant curvature curve when Eo40. The approach of the interface
towards such con®gurations in cases of a ®nite non-vanishing Eo, depends on the values of
additional system parameters, which include the ¯uids holdup and the ¯uids/wall relative
wettability. In an attempt to bridge the gap between large and small EoÈ tvoÈ s numbers, Brauner
et al. (1996b) modeled the shape of the interface by a constant characteristic interfacial
curvature. The characteristic curvature was found by employing the principle of minimization
of the total static energy (potential and surface energies).
The range of validity of the exact solutions obtained in the two extremes of Eo � 0 and

Eo41 for practical two-phase systems, as well as the approximation provided by the
characteristic curvature, can be evaluated in view of a complete exact solution, which yields the
interface con®gurations in the whole space of the system relevant parameters.
In the next section, the equations describing the interface shape are re-derived by

formulating the problem a variational problem. The approach is similar to that used by
Bentwich (1976), where it was demonstrated that the equations for the interface shape can be
solved numerically. Here, exact analytical solutions for the interface shape are obtained for the
whole range of EoÈ tvoÈ s numbers and for various ¯uids holdup and ¯uids/wall wettability
conditions. The ranges of system parameters, where the exact solutions correspond to a
constant interfacial curvature, are identi®ed. Comparison with Brauner et al. (1996b) model for
the characteristic interfacial curvature shows that this model is useful for extending the range
of system parameters where analytical solutions for strati®ed ¯ow can be obtained.

2. The interface shape

2.1. The variational problem

The di�erential equation (6) for calculating the interface shape can be obtained from the
variational problem of minimizing the total free energy (per unit tube length). Given the ¯uids
holdup, the components of the free energy, that are subject to variation with changes in the
interface shape, are the potential energy in the gravity ®eld and the surface energy. Due to
symmetry with respect to x � 0, only half of the cross-section can be considered. The potential
energy (with reference to y � 0, see Fig. 2) is given by Gorelik (1999):
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Ep � Ep1 � Ep2 � �r2 ÿ r1�g cos a

" �Z0
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Zx�Z� dZÿ 1

3

ÿ
R2 ÿ Z2w

�# �7�

The surface free energy, Es consists of the interfacial energy, Es12 (due to the surface tension
between the two ¯uids, s12) and the wall energy, Esw

� Es1w
� Es2w

(due to the wall/¯uids
surface tension coe�cients, s1w and s2w). These surface energies are given by:

Es12 � s12j
�Z0
Zw

h
1� x2

Z

i1=2
dZj �8a�

Esw
� �s2w ÿ s1w�R sinÿ1

�
Zw

R

�
� pR

2
�s1w � s2w� �8b�

where xZ � dx=dZ. Note that since Es12 > 0, the rhs of Eq. (8a) should yield a positive value
both for Z0 > Zw and Zw > Z0. For a given holdup, the value of the total energy, E � Ep � Es

Fig. 2. Schematic description and coordinates: (a) concave interfaces (b) convex interfaces in a circular cross section.
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depends on the shape x�Z� of the interface. The equilibrium shape will be that which minimizes
E, subject to a constraint of a constant ¯uids holdup:

e1 � A1

A
� ~Zw

p

��������������
1ÿ ~Z2

w

q
ÿ 1

p
sinÿ1 ~Zw �

2

p

� ~Z 0

~Zw

~Z ~x ~Z d~Z � 1

2
� constant �9�

where0denotes values normalized by R.
The problem is solved by standard variational calculus. The functional that is being

minimized is G � E� lA1, where l is a Lagrangian multiplier. The condition that dG should
be zero for all possible variations in Z (including Zw and Z0) yields the Euler±Lagrange
equation for the problem at hand:

Z�r2 ÿ r1�g cos a3s12
d

dZ
xZ�

1� x2
Z

�1=2 � l � 0 �10�

where the upper sign in Eq. (10) applies for Zw > Z0 (concave interface).
For arbitrary Z0 and Zw the natural boundary conditions evolve. For convenience, the angles

f and b are ®rst de®ned (see Fig. 2):

ctg f � dx

dZ
; fjx�0 � f0; fjx�xw

� fw �11a�
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R
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R
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In terms of f and b, the natural boundary conditions obtained are:

at x � 0;
dZ
dx
� 0 or fjx�0 � f0 � p �12a�

at x � xw; tgÿ1
�

dZ
dx

�
� fw �

p
2
� b� y; 0RfwR2p �12b�

where y is the ¯uids/wall wettability angle, which is related to the surface free energies by
Young equation:

cos y � s2w ÿ s1w

s12
; 0RyRp �13�

Boundary condition (12a) yields solutions for Z�x� which are symmetrical with respect to the y
axis. At the triple point (TP, where the interface is in contact with the wall), condition (12b)
imposes the ¯uids/wall wettability condition (see Fig. 2).
Eq. (10) is the Laplace equation applicable to the particular problem. The fact that it is

identical to Eq. (6) implies that the formulation of a variational problem that minimizes the
system potential and surface energies, is consistent with the hydrodynamic equations for
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unidirectional and fully developed axial ¯ow. Hence, no other energies (such as the ¯uids
kinetic energies) should have been included in the analysis.
The l term in Eq. (10) (which replaces the constant in Eq. (6)), evolves from the constraint

on the phases volume. Physically, it expresses the fact that for enclosed ¯uids, the local
pressure di�erence across the interface can be determined in terms of the hydrostatic pressure
up to a level of a priori unknown constant. Mathematically, it represents the magnitude of a
priori unknown surface tension force at some reference point (say Z � 0). The value of this
constant as function of the system parameters is obtained as part of the solution of the
problem.

2.2. Mathematical solution

Eq. (10) is a nonlinear di�erential equation for x�Z�. This form is convenient since x�Z� is
single valued (Z�x� may be double valued) and may have several in¯ection points. In terms of
dimensionless variables, ~x � x=R,~Z � Z=R, Eq. (10) reads:

~Z � Lÿ a2v
2

d

d ~y
cos f � 0 �14a�

where

a2v �
2s12

Drg cos aR2
� 2

E0
; L � l

Drg cos aR2
�14b�

Integration of Eq. (14) with respect to ~y yields an explicit relation between local values of ~Z
and f:

~Z �2av
���������������������
A� cos f

p
ÿ L �15�

where A is an unknown integration constant. Di�erentiating Eq. (15) with respect to ~x yields:

d ~x �3av
cos f�

A� cos f
�1=2 df �16�

The choice of an appropriate sign in Eqs. (15) and (16) depends on the range of variation of f
along the interface curve. It should be carefully examined when passing through in¯ection
points. When the lighter phase is the more wetting phase, 0<y<p=2 and 0RfwRp, the upper
sign applies, whereas the lower sign corresponds to p=2<yRp and p<fwR2p (the heavier ¯uid
is the wetting phase). Other choices of sign in Eqs. (15) and (16) yield unphysical discontinuous
solutions for Z�x� (Gorelik, 1999).
Integration of Eq. (16) using boundary condition (12) and straightforward manipulations

yields a solution for ~x�f�:
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q

. The functions F1�k,f�,F2�k,f� represent elliptical integrals of the ®rst and
second kind respectively and are given by series of the trigonometric functions (Grandsteyn
and Rezhik, 1980). Note that F1�k,p=2� is the complete elliptical integral, usually denoted by
F1�k�. Tabulated values of elliptical integrals can be found in Abramowitz and Stegun (1964).
The solution is completed when the constants A (or k ) and L are determined. Substituting
boundary condition (12b) in (17) yields:
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It is to be noted that the minimal value of A is 1 and A41�k41� as the interface approaches a
plane con®guration. Its value increases with increasing av. Thus, given av,y and b, Eq. (18)
represents a non-linear algebraic equation in a single unknown, k. Once a solution for k is
obtained, the complete interface shape is de®ned by Eqs. (15) and (17). The value of L can be
calculated by applying Eq. (15) at the triple point where ~Z � sin b and f � fw, whereby:

L �2av
������������������������
A� cos fw

p
ÿ sin b �19�

The corresponding ¯uids holdup is obtained by Eq. (9), which in terms of b reads:

e1 � 1

p

"
1

2
sin 2bÿ b� p

2
� 2

� ~Z 0

sin b
~Z ~x ~Z d~Z

#
�20�

One should realize, however, that b is actually a priori unknown. The set of known parameters
includes av (or the EoÈ tvoÈ s number), the wettability angle, y and the ¯uids holdup e1. From the
practical point of view, it is of interest to obtain solutions in terms of these three parameters.
This requires an iterative solution, whereby a search for a value of b that meets a prescribed
value for the ¯uids holdup is carried out. The search is facilitated by deriving an explicit
expression for L in terms of the holdup. Integrating Eq. (14a) with respect to ~y (after
multiplying it by x ~Z ) and employing the constraint on the ¯uids holdup (20) yields:

L � 1

2cos b

�
pe1 � bÿ p

2
ÿ 1

2
sin 2bÿ a2v cos�y� b�

�
�21�

The solution is carried out by using Eqs. (18) and (19) for a prescribed b to obtain A and L

(17)

(18)
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and then iterating on b which satis®es Eq. (21). Note that, the use of Eq. (21) instead of Eq.
(20) as a constraint on the ¯uids holdup, avoids the integration required in rhs of Eq. (20).

2.3. Solution for av41

The limit of av41 �Eo40� corresponds to systems where gravity can be ignored compared
to surface forces. In this limit, the solution of Eq. (10) with boundary conditions (12a) and
(12b) simpli®es and is given by the following equations:

~x � ÿ a2v
2L

sin f �22�

L ~y � ÿ a2v
2L

cos fÿ C �23�

where

L � ÿa
2
v

2

sin fw

cos b1

C � ÿa
2
v

2

�
cos fw � sin fwtgb1

� �24�

In the limit of very large capillary numbers, the curvature of the interface is constant and (for
a given holdup) is determined by the wettability angle. The constant curvature provides a
simple description of the two-phase geometry and enables obtaining explicit expressions for the
holdup and the length of the interface. In terms of fw and b1, these are given by:

e2 � 1

p

(�
p
2
� b1 �

1

2
sin 2b1

�
ÿ cos2 b1

sin2fw

�
fw ÿ pÿ 1

2
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�)
; fw 6� 0,p

e2 � 1

p

�
p
2
� b1 �

1

2
sin 2b1

�
; fw � 0,p �25�

and

~Si � 2j
� ~Z 0

~Zw

�
1� ~x2

~Z

�1=2
d~Z j � 2

ÿ
pÿ fw

�
cos b1

sin fw

; fw 6� 0,p

~Si � 2cos b1; fw � 0,p �26�

where Si is the interface length � ~Si � Si=R� and fw � p=2� b1 � y.
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2.4. Results

The mathematical solution yields analytical equations for calculating the shape of the
interface, ~Z� ~x� and L. These are obtained in terms of three dimensionless parameters: the
EoÈ tvoÈ s number (or av), the ¯uid/wall wettability angle, y and the ¯uids holdup. The function
~Z� ~x� determines the geometry of the ¯uids distribution in the pipe cross section and contact
with the pipe wall, whereas L is required for calculation of the pressure distribution.
The ®rst important point to realize is, that in a pipe, the interface shape varies with the

¯uids holdup. This is demonstrated in Fig. 3 where the solutions for ~Z�x� are given for a
constant EoÈ tvoÈ s number and di�erent ¯uids holdup. The case of y � 908 (Fig. 3a) corresponds
to equal wettability of the two ¯uids. In this case, the interface is concave for relatively low
holdup of the upper phase, e1<0:5 and convex for e1 > 0:5. For the particular case of
e1 � e1p � 0:5, the interface is plane, since this con®guration satis®es the wettability condition

Fig. 3. Interface con®gurations for av � 2 (Eo � 1): e�ect of holdup for y � 908 and y � 158.
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at the solid wall. When the upper phase is the more wetting phase �y<908�,e1p decreases, as
shown in Fig. 3b (for y � 158,e1p ' 0:004).
Note that the symmetrical case of y � 1658 (the lower liquid is the wetting phase) is obtained

by rotating Fig. 3b by 1808 around the pipe center and replacing values of e1 by e2. Generally,
the interface shapes in a system (B) where p

2<yRp (the lower ¯uid is the more wetting phase)
can be deduced from results obtained for symmetrical con®gurations corresponding to 0RyRp

2
(system A), using the following rule:
When

�av�A� �av�B

�y�A� p� �y�B

�e1�A� �e2�B �27a�
then ÿ

~Z
�

A
� ÿÿ~Z �

B
�27b�

The value of e1p approaches zero as y40 and the interface is convex independently of the
¯uids holdup (e2p40 as y4p and the interface is always concave). However, for partial
wettability �y 6� 0,p� there is a particular value of holdup, e1p, where adhesion forces to the wall
are just balanced at the triple point and the system behaves as pseudo gravitational Ð the
interface is plane independently of the EoÈ tvoÈ s number. For e1 6� e1p the interface curvature
increases with increasing av (reducing Eo ).
The dependence of the interface shape on the ¯uids holdup is a basic di�erence between pipe

¯ow and channel ¯ow. In a rectangular cross section, the interfacial shape is invariant with the
¯uids holdup, except for low holdup of one of the phases, where the interfacial shape may be
constrained by the presence of the upper, or lower wall. Otherwise, the holdup a�ects only the
average interface level. For y<p=2, the interface is always convex, and it is concave for
y > 908. For y � 908 the system is pseudo gravitational independent of the EoÈ tvoÈ s number and
holdup. The solution for the interface shape in a rectangular cross section is given in Appendix
A.
One of the most important characteristic of the interface shape is the location of its contact

with the tube wall (the TP point), described by the value of b (see Fig. 2). The value of b
determines the portion of the tube perimeter which is wetted by each of the ¯uids and has an
obvious e�ect on the pressure drop and wall/¯uids transport phenomena. Note that for b4908,
the wall is entirely wetted by the lower phase, whereas b4ÿ 908 corresponds to con®gurations
where the wall is wetted only by the upper phase.
The e�ect of the wettability angle on the variation of b with the holdup and the capillary

number can be studied in view of Fig. 4. The values of b corresponding to a plane interface are
given by the curve for av � 0, which is applicable when surface forces vanish. The other
extreme of no gravity force is described by the curve of av41. Fig. 4a is for ideal wettability
of the upper phase �y � 08�. For this case e1p � 0 and the interface is convex for any non-
vanishing value of the capillary number (b<b0 � b�av�0� over the entire range of holdup). The
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Fig. 4. The ¯uids contact with the wall: variation of b with the holdup for various capillary numbers and wettability
angles.
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®gure shows that the values of b deviate from those predicted by a plane interface already for
a small capillary number, such as av � 0:1. Note that horizontal ¯ow of air and water in a 1
in. tube corresponds to av � 0:3 and it increases with reducing the density di�erence (as in oil
water systems), reducing the tube diameter, or reducing the gravity ®eld by inclining the tube
to the horizontal.
Fig. 4a and b show that for a given holdup, b values vary over a considerable range with

changing av. With increasing av, the upper wetting ¯uid wets a larger portion of the tube
perimeter. For su�ciently high capillary number, the variation of b with the holdup
approaches a uniform curve obtained by the solution for av41. In cases of almost ideal
wettability of the upper phase, the curve of av41 provides a lower bound on the value of b.
For y � 58, this lower bound is greater than ÿ908, in particular for high holdup of the lower
(non-wetting) ¯uid. For low holdup of the lower (non-wetting) ¯uid, b4ÿ 908, indicating that
the lower ¯uid is almost encapsulated by the upper wetting phase. The value of ÿ908 is
approached asymptomatically for y � 0 and large av (Fig. 4a), whereby the wetting ¯uid
completely encapsulates the lower ¯uid and a con®guration of a fully eccentric core-annular
con®guration is formed irrespective of the holdup.
The variation of b with the capillary number is moderated with reducing the di�erence in the

wetting tendency of the two ¯uids. This trend is clearly seen in Fig. 4a±e. As y4p=2, the
di�erence between the value of b0 (corresponding to av � 0, ¯at interface) and b1 (for av41)
diminishes. Fig. 4c±e show that all curves of b�e2,av� intersect at e2 � e2p, where the interface is
plane irrespective of the capillary number. In systems of y<p=2, the interface is convex for
e2<e2p and b values are bounded below by b1 and above by b0. The bounds are reversed for
e2 > e2p, where the interface is concave and the more wetting ¯uid wets a smaller portion of the
tube perimeter than that under gravity dominated conditions �av � 0�. Inspection of Fig. 4a±e
indicates that, with increasing av, the approach of the b values to b1 is faster as y4p=2.
The approach of the interface shape to the solutions obtained for av � 0 or av41, and the

range of parameters where the solutions in either of these extremes can be used to describe the
phases geometry, are further studied in view of Figs. 5±8. These ®gures show the absolute and
relative deviation in the wetted perimeter of the lower phase, and the relative deviation in the
length of the interface when the interface is modeled either as planar (Figs. 5 and 6), or by the
constant curvature predicted by the av41 solution (Figs. 7 and 8). Obviously, the
approximation provided by a model of a plane interface deteriorates as av increases, whereas
the approximation provided by the solution of av41 deteriorates with reducing av.
Considering an error of 110±15% as acceptable, Figs. 5 and 6 show that when a model of

¯at interface is used, this error level is exceeded already for av10:2. Even with a small av, for
small holdups of the non-wetting (lower) phase, the relative error in its wetted perimeter
exceeds 100%. The relative error escalates with increasing the capillary number. The large
relative errors for low e2 result from the tendency of the wetting phase to ecapulate small
amounts of the non-wetting phase and to diminish its contact with the wall already at
relatively small capillary numbers.
Inspection of the deviations associated with the model of av41�Eo40� in Figs. 7 and 8

indicates that this model provides a good approximation for av > 5. The predictions improve
as the holdup of the less wetting phase decreases. Since the errors are zero also for e2 � 1
(single phase) the largest deviations are in the range of 0:5<e2<0:85.
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Fig. 6. The deviation in the interface length when a model of a plane interface is used (y � 58).

Fig. 5. The deviation in the lower phase wetting perimeter when a model of a plane interface is used (y � 58).
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In view of Figs. 5±8, there is a considerable range of capillary numbers where neither the
model of ¯at interface �av40� nor the model of the av41 constant curvature, correctly
describes the phases geometry. Although this range decreases as the ¯uids/wall wetting
tendency becomes similar �y4p=2�, the parameters space where the exact solution should be
applied does not diminishes to zero.

Fig. 7. The deviation in the lower phase wetting perimeter when the model for av41 �Eo � 0� is used (y � 58).

Fig. 8. The deviation in the interface length when the model of av41 �Eo � 0� is used (y � 58).
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Another important outcome of the solution is the variation of L with the parameters of the
solution. The value of L is required for calculating the pressure distribution in the cross section
and the average pressure force acting on each of the ¯uids cross section.
The physical signi®cance of the parameter L can be understood by examining its value in the

limits of av40 or av41. When surface tension forces are ignored �av � 0�, the interface is
plane and is given by ~Z � ~h ÿ 1, (h is measured from the tube bottom) and Eq. (10) yields:

L0 � Ljav�0 � 1ÿ ~h � 1

2cos b0

�
sin b0 � b0 � pe1

� � sin b0 �28�

In this case, L is a constant dimensionless pressure along the interface due to the gravity ®eld.
In the other extreme of av41 Eqs. (10), (12) and (14) yield:

L1 � Ljav41 � ÿ
a2v
2

cos
ÿ
y� b1

�
cos b1

�29�

In this case, L1 represents a constant (dimensionless) capillary pressure jump along the
interface due to the constant curvature. Comparison of Eqs. (28) and (29) with Eq. (21) shows
that due to the fact that b0 6� b1 the value of L cannot be represented as a superposition of
the above two asymptotic values (as is permitted in a rectangular cross section, see (A10) to
(A13) in Appendix A). However, in view of Eq. (10) (or Eq. (14)) the value of L for any av can
be represented by a superposition of L0 and the contribution of the surface tension force due
to the interfacial curvature at the point ~Z � ~h ÿ 1 (where the interface level is identical to that
of a plane interface). In view of the above interpretation of L and its relation to the interfacial
curvature, Rÿ1i at ~Z � ~h ÿ 1, the following scaling is used to represent the net e�ect of surface
forces (the capillary pressure) on the value of L:

~L �
~R
ÿ1
i

ÿ
~Z � ~h ÿ 1

�
~R
ÿ1
i �av41�

� 2cos b1
a2v cos

ÿ
b1 � y

� �Lÿ L0 � �30�

Note that for a speci®c holdup, the values of L0 and b1 (see Section 2.3) can be easily
obtained. The variation of the rhs of Eq. (30) with the capillary number, for constant
wettability angle y and speci®ed values of the holdup, are shown in Fig. 9. Obviously for
av40,L4L0, and therefore, all curves go to ~L � 0. In the other extreme of av41, ~L41. The
value of ~L � 1 is also approached for ®nite av, when the holdup in the system approaches e2p.
As discussed with reference to Figs. 3 and 4, when e2 � e2p the interface is plane irrespective of
the av, and Rÿ1i � 0. Hence, for e2 � e2p, ~L � 1 for all av values. Consequently, the variation of
~L with the holdup (or b) exhibits a non-monotonous and complex variation, as is further
demonstrated in Fig. 10.
Another point which deserves attention is that the values of ~L are not bounded by those

predicted via the av41 model. As is shown in Figs. 9 and 10, ~L overshoots the value of 1,
implying that the local interface curvature for a ®nite av can exceed the constant curvature that
is obtained in the limit of av41, thereby increasing the capillary pressure. The overshoot in ~L
is moderated and eventually vanishes, as y4p=2.
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Fig. 10. Variation of the capillary pressure with b for y � 58 and di�erent values of av.

Fig. 9. Variation of the capillary pressure with av for di�erent holdups and y � 58, 308, 608.
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3. Comparison with Brauner et al. (1996b) model

Analytical solutions of the Stokes equations for strati®ed ¯ows in pipes can be obtained, if
the ¯uids interface can be described by a curve of a constant curvature. In order to obtain the
appropriate characteristic interfacial curvature, Brauner et al. (1996b) formulated the
variational problem of minimizing the sum of the system potential and surface energies with
approximate con®gurations that are described by a priori unknown constant curvature. The
curvature and the location of the TP are subject to variations which are constrained by a
prescribed ¯uids holdup.
Taking a con®guration of ¯at interface as a reference, the expression obtained for the system

free energy, in terms of the variables used in this study (f�,f and a in Brauner et al. (1996b)
are replaced by fw,b� p=2 and �pÿ y�, respectively) reads:

~E � Es � Ep

R3�r2 ÿ r1�g cos a
�
(

cos3 b
sin2 fw

ÿ
ctg fw � ctg b

��
pÿ fw �

1

2
sin 2fw �

2

3
cos3b0

�

� a2v

"
cos f0

ÿ
pÿ fw

�
sin fw

ÿ cos b0 � cos y
ÿ
bÿ b0

�#)

Given av,y and e2, the equilibrium interface shape is determined by b and fw, which
correspond to a minimum of ~E , subject to the constraint:

e2 � 1

p

(
b� p=2� 1

2
sin�2b� ÿ cos2 b

sin2 fw

�
fw ÿ pÿ 1

2
sin
ÿ
fw

��)
; fw 6� p

e2 � 1

p

�
b� p

2
� 1

2
sin 2b

�
; fw � p �32�

Note that in the exact solution for the interface shape fw is determined by b and the
wettability angle (see Fig. 2 and Eq. (12b)). In the approximate solution, b.c Eq. (12b) is
relaxed, and the solution obtained for fw only approximately satis®es the wettability condition.
However, in the extremes of av � 0 or av41 (where also the exact interfacial shapes
correspond to a constant curvature) the approximate and exact solution coincide, whereby:

fw � p; for av � 0,Eo41

fw � y� b� p=2; for av41,Eo41 �33�
Fig. 11 shows a typical comparison between the interface con®gurations of the exact solution
and that described by the constant characteristic curvature. The approximate solution closely
follows the exact solution in describing the e�ect of the holdup on the curving of the interface.
Fig. 11b summaries results for b obtained with various wettability angles and shows that the
comparison improve as y4p=2. The largest deviations are for y � 58 (or y � 1758). However,
for y � 458 (or 1358) the di�erence between the two solutions is already un-noticeable.

(31)
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The relative and absolute deviations in the wetted perimeter of the lower phase which are
associated with the approximate solution are shown in Figs. 12 and 13. The absolute deviation
is bounded by 4.5%, which is approached for av ' 0:5±1 and y � 58. In this parameters range
the relative deviation is maximal and may reach 30%, but only for small holdup of the lower
(non-wetting) phase, where b40 and the wetted perimeter of the lower phase diminishes to a
very small length. Comparison with Figs. 5 and 7 shows that in this region, the relative
deviations of the other approximate models (either a plane interface model or the high

Fig. 11. Comparison of the characteristic curvature model with the exact solution, av � 1: (a) curves of ~Z �x� for
y � 158, (b) value of b vs. e2 for various y.

D. Gorelik, N. Brauner / International Journal of Multiphase Flow 25 (1999) 977±1007 995



capillary number model) escalates to extremely high values (larger than 1000%). The
parameters range presented in Figs. 12 and 13 is associated with the maximal errors. The
absolute errors and relative errors decrease when av > 1 or av<0:5 and when y4p=2. Note that
for avr1 and yr458 the deviations of the approximate solution are less than 1% The relative
deviations associated with the wetted perimeter of the upper phase (which is the more wetting
phase) are even lower.
The above trends are also indicated by the error associated with the interface length (Fig.

14). Note that in the characteristic curvature model the interface length is given by a simple
analytical expression (the same as Eq. (26)). Fig. 14a (for av � 0:5) shows that the relative
error in the interface length is always less than 10% and it is signi®cantly lower for y >
58�y4p=2� or for smaller and larger capillary numbers (Fig. 14b, for av<0:5 and av > 2).
The conclusion that can be drawn in view of Figs. 11±14 is that the model of the constant

characteristic curvature provides a good description of the phases geometry over the whole
parameters space. Except for a small range of capillary numbers, av ' 0:5±1, and y40 or y4p,
this model practically coincides with the exact solution.

Fig. 12. The absolute deviations in the values of lower phase wetted perimeter associated with the model of constant
characteristic curvature (Brauner et al., 1996b).
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4. Discussion: implications to strati®ed ¯ow solutions

The prediction of the location of the interface in two-phase strati®ed ¯ow is necessary in
order to obtain analytical or numerical solutions of the ¯ow equations. Generally, the solution
for the interface location is coupled with the solution of the ¯ow equations, through the
boundary conditions imposed on phases velocities and shear stresses components along the
interface. However, in the particular case of fully developed unidirectional axial ¯ow, the
problem can be signi®cantly alleviated by decoupling the solution for the interface location
from the solution of the ¯ow equations. For this case the solution for interface location is
identical to that obtained in a static two-phase system with the same holdup. The governing
equation, which determines the interfacial shape, can be derived either from the condition of
equilibrium between the local pressure jump at the surface and local surface tension force, or
by formulating the variational problem of minimizing the system total free energy. The
energies which are subject to variation in this case are the potential energy in the gravitational
®eld, the wall energy and interfacial energy.
It is of interest to note that for undeveloped axial ¯ow, this variational problem is

inconsistent with the ¯ow equations and boundary conditions across the interface, since with

Fig. 13. The relative deviations in the values of the lower phase wetted perimeter associated with the model of
constant characteristic curvature (Brauner et al., 1996b).
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@u1=@z,@u2=@z 6� 0, lateral velocity components must be non-zero. In this case, additional

contribution to the energy (e.g., kinetic energies) may have to be accounted for, if a variational

formulation can be justi®ed at all. For a turbulent fully developed axial ¯ow, the solutions

obtained for the interfacial shape are applicable in case secondary ¯ows and hydrodynamic

shear stresses normal to the interface are negligible. It is worth emphasizing, however, that for

high Reynolds number ¯ow in systems of av ' 1 (or larger), the common assumption of a

plane interface cannot be justi®ed either, since gravity is no longer dominating. For su�ciently

high Reynolds numbers (as encountered in the ¯ow of a gas phase), lateral velocity

Fig. 14. The deviation in the interface length associated with the model of constant characteristic curvature (Brauner

et al., 1996b).
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components due to secondary ¯ows and turbulent shear stresses (normal to the interface) may
dominate the interface curvature.
In fully developed unidirectional axial ¯ow, the location of the interface is determined by

three non-dimensional parameters, which include the EoÈ tvoÈ s number, Eo � 2=a2v �
R2Drg cos a=s12, the ¯uids/wall wettability angle, y and the ¯uids holdup. The coupling with
the hydrodynamic problem is through the ¯uids holdup, which should satisfy the momentum
equations in the ¯ow direction. In case of horizontal laminar ¯ows, the ¯ow equations add two
dimensionless parameters: the ¯uids ¯ow rates ratio, ~Q � Q1=Q2 and viscosities ratio, ~m �
m1=m2 (Brauner et al., 1995), thus the dimension of the parameters space is increased to four. In
inclined ¯ow, and additional inclination parameter, Y � Drg sin a=�dP=dz�1s evolves from the
¯ow equations (Brauner et al., 1998), �dP=dz�1s is upper phase super®cial pressure drop.
It is important to realize that capillary systems are not necessarily characterized by a small

tube diameter. The analysis shows that diameter e�ects are incorporated in the non-
dimensional EoÈ tvoÈ s number and identical curved interfacial con®guration will be obtained in
large diameter tube (with low density di�erential, reduced gravity or inclined systems) of the
same Eo,y, ~Q ,Y and ~m as long as laminar ¯ow prevails. Another important implication is the
possibility of simulating two-phase ¯ow under microgravity conditions by conducting terrestrial
experiments. (For instance laminar gas±liquid ¯ows in space can be simulated by liquid±liquid
systems under normal gravity conditions, Brauner, 1990).
Analytical solutions of the ¯ow equations can be obtained in case the curvature along the

interface is constant. For such interfacial geometries the appropriate coordinate system is the
bipolar coordinate system, which enables arriving at analytical expressions for the 2D pro®les
of the ¯uids axial velocity and shear stresses (Brauner et al., 1995, 1996a). In the limit of fully
eccentric core-annular con®guration, a special coordinate system is required (Rovinsky et al.,
1997). Although the assumption of a constant curvature is rigorously valid only in the
extremes of av � 0 or av41, this study identi®es the ranges of parameters where this
assumption can be justi®ed. In practice, for y40, or y4p the solutions of av41 can be
applied already for av > 10 � avH (Eo<0:01) and the solution of a plane interface (av � 0) for
av<0:1 � avL (Eo > 100). The value of avH decreases as the wetting tendency of the two ¯uids
gets similar �y4p=2� or with reducing the holdup of the non-wetting phase. On the other hand,
for y 6� 0 and y 6� p, there is a particular value for the holdup where a plane interface exactly
matches the wettability condition at the wall. For this particular holdup the system is pseudo
gravity dominated, whereby the interface is plane irrespective of the capillary number
�avL41�.
The gap between avL and avH can be bridged by using the model for the characteristic

curvature (Brauner et al., 1996b). The characteristic curvature corresponds to a curve of
constant curvature, which yields the best approximation to the exact interfacial shape, since it
satis®es the same variational principle of minimizing the system free energy. In fact, the
approach used by Brauner et al. (1996b) is based on the well-recognized bene®t of formulating
di�erential equations as a variational problem, which then permits obtaining an approximate
solution in terms of prescribed functions. Comparison of the exact solution with the
corresponding characteristic curvature solution shows that the errors in describing the phases
geometry are minimized over the entire parameters space. Thus, the characteristic curvature
model suggests a possibility of obtaining analytical solutions which yield strati®ed ¯ow
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characteristics over wide ranges of parameter values Eo,y, ~Q ,Y and ~m . These analytical
solutions were used to explore the signi®cance of considering the interface curvature in
predicting the pressure drop and holdup for a speci®ed two-¯uid system and operational
conditions (Brauner et al., 1995).
The exact solution for the interface shape is of obvious importance when analytical solution

of the ¯ow equations cannot be obtained and the equations are solved numerically. Given Eo,y
and the holdup, the exact solution provides the interface location. Numerical schemes can be
used to obtain the 2D axial velocity pro®les for a given axial pressure drop and a gravity
component. The corresponding ¯uids ¯ow rates are then obtained by integrating the velocity
pro®les over the (known) ¯uids cross sectional area. The inverse problem, of obtaining a
solution for the axial pressure drop and holdup for speci®ed ¯ow rates, generally requires an
iterative procedure. The knowledge of the interface location under fully developed conditions is
also of a major importance for setting an appropriate computational domain and analysis of
the results of numerical simulations of 3D two-phase ¯ows in a developing region, where the
evolution of the interface from speci®ed entry conditions is studied (see, for example, the
numerical study by Ong et al., 1994 and the discussion in Brauner et al., 1996c).
The exact solution for the interface con®guration can be also incorporated in simpli®ed

models for strati®ed ¯ow, such as the two-¯uid model. In this case, given Eo and y, the
geometrical variables (phases wetted perimeters, ¯ow cross-sectional areas and the interface
length) can be obtained in terms of an a-priori unknown location of the TP point, b (replacing
the layer depth in case of a plane interface). When combined with the two-¯uid momentum
equations, a complete solution can be obtained for speci®ed operational conditions (¯ow rates),
which includes the pressure drop, holdup and the interfacial shape. More details are given in
Gorelik (1999). The results are similar (practically identical) to that obtained by the two-¯uid
model for strati®ed ¯ows with curved interfaces, recently presented by Brauner et al. (1998).
The latter utilizes the characteristic (constant) curvature model for describing the interface. The
deviations caused by the small inaccuracies in describing the exact interfacial shape are much
less signi®cant than other inherent inaccuracies and limitations of the two-¯uid model (such as
de®nitions of the hydraulic diameters and modeling of the wall and interfacial shear stresses
(Gorelik, 1999; Brauner and Moalem Maron, 1989; Hall and Hewitt, 1993). The comparison of
the two-¯uid model predictions with experimental data of Valle and Kvandal (1995) for
strati®ed oil±water ¯ow �av � 0:32� was presented in Brauner et al. (1998). This comparison
demonstrates the signi®cance of accounting for the interfacial curvature in modeling strati®ed
¯ows in liquid±liquid systems and other two-phase systems of a non-vanishing capillary
number.
Another important result of the exact model is the expression obtained for the capillary

pressure (Eqs. (21) and (30)) and its variation with the system parameters (Figs. 9 and 10). It is
important to realize that for 0<y<p, when neither of the phases ideally wets the tube wall,
strati®cation in the system cannot be ruled out even in the limit of av41 (gravity is
completely absent). In fact, the existence of strati®ed ¯ow pattern in gas±liquid down ¯ow
through vertical capillaries was reported in the literature (Biswas and Green®eld, 1985). The
capillary pressure is the key for analyzing the stability of strati®ed ¯ow in systems of non-
vanishing capillary number. In such systems the stabilizing (or destabilizing) forces evolve due
to surface forces (surface tension and wall/¯uids adhesion) and are manifested in variations of
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the capillary pressure with the interfacial shape and holdup in the presence of interfacial
disturbances. On the other hand, the solution for the interfacial shape in systems of av � 1 and
when one of the phases ideally wets the wall (y � 0 or p), shows that in such systems the fully
eccentric core-annular con®guration is the natural ¯ow pattern, which can be obtained also in
the limit of Re40 in both phases. Indeed, core ¯ow pattern in oil±water systems (where a
highly viscous core is lubricated by an annular water ®lm) is known to be promoted by
minimizing the density di�erence between the ¯uids and using hydrophilic pipe material
(Joseph and Renardy, 1992; Brauner, 1998). Obviously, stabilization of the core in a concentric
position requires increasing the ¯ow rates for evolution of stabilizing hydrodynamic forces
which provide the necessary lift to balance the buoyancy force on the core.

5. Conclusion

The study addresses the problem of predicting the interface location in strati®ed ¯ows.
Analytical expressions are obtained for the interface shape and for the capillary pressure by
solving the variational problem of minimizing the system free energy (potential and surface
energies). It is shown that this variational principle is consistent with the hydrodynamic
equations of unidirectional fully developed axial laminar two-phase ¯ow in a conduit. Under
these conditions, the solution is exact and is determined by three dimensionless variables: the
holdup, ¯uid/wall wettability angle and the EoÈ tvoÈ s number, Eo � Drg cos aR2=s12. The ranges
of parameter values, for which either the model of ¯at interface �Eo41�, or the model of
constant curvature of Eo = 0 are applicable, are explored. It is also shown that the model of
constant characteristic curvature (Brauner et al., 1996b) provides a good description of the
interfacial shape and enables extending the parameters space where analytical solutions of
strati®ed ¯ow can be obtained.

Appendix A. The interface shape in a rectangular channel

Formulation of the variational problem for minimizing the system free energy of two ¯uids
in a channel of a rectangular cross section (Fig. A1) leads to the following Euler±Lagrange (E-
L) equation:

~Z � Lÿ a2v
2

d

d ~x

~Z ~x��������������
1� ~Z2

~x

q � 0 �A1�

where

av �
�����������������������������������������

2s12
�r1 ÿ r1�g cos aW 2

s
; L � l

�r2 ÿ r1�g cos aW
�A2�

~x � x=W; ~Z � Z=W �A3�
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The natural boundary conditions are:

~x � 0; ~Z ~x � 0; f � p

~x � 1; ~Z ~x � ctg Y; f � p
2
ÿY �A4�

where f � tgÿ1�~Z ~x �. Note that here Y<p=2 corresponds to a wetting lower ¯uid. The
constraint on the ¯uids volume is:

e2 �
�1
0

~Z d ~x � V2

W 2
� e2

�
L

W

�
�A5�

Integration of (A1) with respect to ~x yields

~y � L �2av
���������������������
Aÿ cos f

p
�A6�

and

d ~x �3
av
2

cos f���������������������
Aÿ cos f

p df �A7�

where A is the integration constant. The upper sign in Eqs. (A5) and (A6) applies for 0RYRp
2

and the lower sign for p
2RYRp. Utilizing the boundary condition at ~x � 0 the solution of Eq.

(A6) is:

Fig. A1. Schematic description and coordinates in a rectangular cross section.
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~x �3
av
2

�f
0

cos f���������������������
Aÿ cos f

p �A8�

The integral on the rhs of Eq. (A7) can be expressed in terms of elliptical integrals of the 1st
and 2nd type. The solution for x�f� is identical to that obtained in a circular cross section and
is given by Eq. (17). Substituting boundary condition at ~x � 1 yields an implicit algebraic
equation for A (or for k � ��������������������

2=�A� 1�p
):

2
avk���
2
p f

�
2

k2
ÿ 1

�"
F1

�
k,
p
2

�
ÿ F1

�
k:
p=2�Y

2

�#
ÿ 2

k2

"
F2

�
k,
p
2

�
ÿ F2

�
k,
p=2�Y

2

�)
� 1 �A9�

The value of the constant A approaches the value of 1 as av40 and it increases with increasing
av. For av � 1, a simple explicit expression can be obtained for A. Assuming A� cos f, the
integration in Eq. (A7) yields

Ajav41 � A1 � a2v

4
cos2 Y �A10�

The approach of A to the asymptotic value given in Eq. (A9) is shown in Fig. A2. The
capillary number where practically A � A1 increases as the wettability angle approaches 908.
Obviously, for Y � 908, the interface is ¯at, independently of the capillary number and A � 1.
For high capillary numbers, the solution for the interface shape is given by:

Fig. A2. Variation of the value of the integration constant, A with the capillary number and wettability angle.
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~x � a2v
2L1

sin f

~y � ÿ a2v
2L1

cos f� C

~L1 � a2v
2

cos Y; C � ÿ
�
e2 � 1

2

�
ctg Y �A11�

It is to be noted that contrary to the solution in a circular conduit, the interface shape in a
rectangular conduit (Eq. (17) with (A8)) is independent of the ¯uids holdup. The constraint on
the ¯uids holdup a�ects only the average interface elevation from the bottom (Z � h � e2L)
and the value of L. An equation for L can be obtained by integrating the terms in (A5) with
respect to ~x (in the limits ~x � 0 to ~x � 1) and utilizing Eq. (A4):

L � �a
2
v

2
cos Yÿ e2 �A12�

In the extreme of av � 0, the interface is plane and is given by ~Z � h=W � e2L=W and Eq. (A1)
yields:

L0 � Ljav�0 � ÿe2 �A13�
In this case, L is a constant dimensionless pressure along the interface and represents the
`¯oating' tendency of the lower phase. In the other extreme of av41,L � L1 and is given in
Eq. (A10).
Comparison of Eqs. (A10) and (A12) with Eq. (A11) shows that for the simple geometry

under consideration the value of L is a superposition of the above two asymptotic values:

L � L0 � L1 �A14�
In fact, combining Eqs. (A1) and (A11) shows that for any av, the interface curvature at ~Z �
e2L=W (the point where the interface level attains the value corresponding to that obtained for
a plane interface) is determined by the wettability angle:

ÿ @

@x

Zx�������������
1� Z2x

p �����
Z�h
� cos Y

W
�A15�

and is identical to the (constant) interface curvature that would be obtained for av41. It is to
be noted that for a ®nite av, the interface curvature at TP (contact point with the wall) is
a�ected also by the hydrostatic pressure and is not given by Eq. (A14).
The above solution is valid in a bounded range of ¯uids holdup, where the solution for the

interface shape is not constrained by the channel bottom, nor by the top wall. The bounds on
the holdup can be calculated with reference to Fig. A3. When the lower ¯uid forms the more
wetting phase, 0RYRp=2, a lower bound on its holdup is obtained by considering the limiting
situation where the lowest point touches the tube bottom. The additional boundary condition,
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y � 0 at x � 0, permits calculation of �e2�min corresponding to such con®gurations as function
of the capillary number and wettability angle (Fig. A3a). When av � 1,�e2�min approaches a
constant value given by (Gorelik, 1999):

�e2�min
� �e2L=W�min�

1

2cos2 y

�
p
2
ÿY

�
ÿ 1

2
ctg Y for 0RY<

p
2

�A16�

For Y � p=2,�e2�min � 0. Note that in case the upper ¯uid forms the wetting phase, p
2<YRp,

Fig. A3a and Eq. (A15) gives the lower bound on e1L=W (or �e2�max�

Fig. A3. Bounds on holdup for which the solution is validÐe�ect of av and Y.
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An upper bound on e2 (for 0RY<p=2) is obtained by considering the situations where the
interface climb on the side wall and reaches the top wall, ~Zw � L=W. Here too, the additional
condition (~Z � L=W at ~x � 1) yields the corresponding system holdup. The results as function
of av and y are given in Fig. A3b. The asymptotic values for av � 1 satis®es the following
relation:

�e2�max
� 1� 1

2
ctg Y� 1

2cos2 Y

�
p
2
ÿY

�
ÿ 1

cos Y
for 0RY<

p
2

�A17�

and �e2�max � 1 for Y � p=2. For p
2<YRp Fig. A3b and Eq. (A16) give the values of

�e1L=W �max (or �e2�min).
It is to be noted, however, that when the interface merge into the channel corner (see Fig.

A3b), the wettability angle is practically unde®ned. If the wettability condition on the side wall
is relaxed, a feasible solution for 0RY<p=2 and e2 > �e2�max is that corresponding to any
pseudo wettability angle Yp > Y, which is unconstrained by the presence of the upper wall.
The minimal Yp can be obtained from Fig. A3. Another possible solution for e2 > �e2�max is
that the lower ¯uid completely wets the side wall and partially the upper wall. Once the
wettability angle on the upper wall is known, a solution for the interface shape can be
obtained. The solution is, in principle, the same as that obtained for a 2D drop hanging from a
horizontal support (Pitts, 1973). Valid solutions for the symmetrical case of p

2<YRp and
e2<�e2�min can be obtained in an analogue way.
For 0RY<p=2 and e2<�e2�min, the constraint on the ¯uids holdup can be met only if the

interface loses its continuity and the bottom wall dries out from the lower ¯uid over a length
2x0 around the channel center line. The unknown value of x0 can be obtained via a solution
which considers the ¯uid/bottom wettability angle, Y0. The case of Y0 � 0 is of particular
interest, as in most practical situation, the bottom is prewetted by the heavier ¯uid. In this
case, the solution obtained for a continuous interface is valid, provided the characteristic
length scale W (used for normalization) is replaced by W �1ÿ ~x0�. Thus, given Y (on the side
wall), the corresponding curve on Fig. 3a provides a relationship between e1L=�Wÿ x0� and
the pseudo capillary number, avp � av=�1ÿ ~x0� and can be used to extract ~x0. The symmetrical
situation of p

2<YRp and e2 > �e2�max can be treated in a similar way.
The above limitations on the ¯uids holdup may not be of practical signi®cance if surface

tension e�ects are due to a narrow channel (and L/W is large). However, when av � 1 is due
to vanishing Dr or g cos a, these bounds should be considered.
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